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Advances in Polynomial
Continuation for Solving
Problems in Kinematics
For many mechanical systems, including nearly all robotic manipulators, the set of
sible configurations that the links may assume can be described by a system of poly
equations. Thus, solving such systems is central to many problems in analyzing the m
of a mechanism or in designing a mechanism to achieve a desired motion. This
describes techniques, based on polynomial continuation, for numerically solving
systems. Whereas in the past, these techniques were focused on finding isolated ro
now address the treatment of systems having higher-dimensional solution sets. S
attention is given to cases of exceptional mechanisms, which have a higher deg
freedom of motion than predicted by their mobility. In fact, such mechanisms often
several disjoint assembly modes, and the degree of freedom of motion is not nece
the same in each mode. Our algorithms identify all such assembly modes, determin
dimension and degree, and give sample points on each.@DOI: 10.1115/1.1649965#
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1 Introduction
For many mechanical systems, the set of possible config

tions that the links may assume can be described by a syste
polynomial equations. In particular, this is true for any mechan
consisting of rigid bodies joined by any of the lower-order pai
excepting general helical joints. Thus, prismatic, rotary, cylind
cal, spherical and planar joints are all allowed. Moreover, ma
higher-order contact joints are also described by polynomial eq
tions, for example, point-on-plane and line-on-plane contact.
consider both the problem of determining the possible motion
such mechanisms and the problem of finding the parameters o
mechanism such that it meets prescribed precision points. In
latter case, our methods are applicable whenever the gover
equations are polynomial in the unknown design parameters.

In the last decade, polynomial continuation developed int
convenient, reliable tool for solving problems in kinematics. It is
numerical process that finds all isolated roots of a polynom
system.~‘‘Isolated’’ means there are no other roots in the vicini
that is, the solution point does not belong to a higher-dimensio
solution set, such as a curve or surface.! Starting at the known
roots of a suitable start system, the method tracks the solu
paths as the start system is continuously transformed into the
get system. When the start system and the transformation pr
dure, called a homotopy, are chosen suitably, the endpoint
these solution paths are guaranteed to include all isolated s
tions of the target system. The numerical approach of continua
seems to have been first applied to kinematics in@1,2#, as a heu-
ristic, and later by@3# in a modern form with solid mathematica
underpinnings. The modern approach, making essential us
complex numbers to avoid singularities or other degeneracie
presented for engineers and kinematicians in@4,5#, where one may
find references on the development of the method.~See also@6#.!
It has proven to be a powerful approach to solving kinemat
problems, as exemplified by@7,8,9,10#. The early determinations
that the general six-revolute, single-loop spatial mechanism
16 solutions@3# and the general Stewart-Gough platform has
solutions@7# helped guide the subsequent development of a
braic elimination procedures for both problems. When conside
a new kinematics problem, Raghavan and Roth@8# recommend to
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first apply continuation to find the expected number of solutio
and use that information to decide if the problem is within ran
of elimination techniques. Elimination algorithms tend to be fas
and to have acceptable accuracy when the number of roo
moderate, but continuation tends to be faster and more accu
when the number of roots is larger. Some publicly available s
ware for polynomial continuation is available@11,12#.

It may be that a problem does not have isolated roots, but ra
has higher-dimensional solutions. In fact, in general, the soluti
of a polynomial system may consist of components of seve
different dimensions. Simple examples can be constructed
products of polynomials, for example, iff (x,y)5(x1y21)(x2

21) and g(x,y)5(x1y21)(x2y), then the solutions of the
system$ f 50,g50% consist of the linex1y2150 and the two
points (x,y)56(1,1). It is not necessary that the polynomials
factorizable for these phenomena to arise; in fact, examples of
from kinematics will be presented herein. One, a moveable se
bar linkage, has both a solution curve and six isolated solutio
and another, a moveable Stewart-Gough platform, has severa
lution curves. In both cases, the existence of the solution cu
depends on the parameters of the linkage having certain sp
relationships; general linkages of these types have only isol
solutions.

Recently, we developed a method for solving these more g
eral cases by polynomial continuation@13#, making essential use
of the method described in@14#. Improvements to the techniqu
have been described in@15,16,17#. These are all part of a program
of work outlined in@18#, which coined the term ‘‘Numerical Al-
gebraic Geometry’’ and laid down the basic concepts therein.
algorithm whose use is described in this paper is an extensio
@12#; executable code for the experimental algorithms is availa
at the second author’s website and the software is describe
more detail in@19#.

2 Three Example Problems
In this section, we introduce three example problems: a pla

seven-bar structure, a movable Stewart-Gough platform an
problem in spatial body guidance. The solutions to these will
discussed later, after a brief outline of our methods.

2.1 A Seven-Bar Structure. This problem tests a known
result from the kinematics of planar linkages. Suppose we
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given a collection of seven rigid planar pieces: one quadrilate
two triangles, and four line segments with vertices labeled
shown at the top of Fig. 1.

We wish to assemble the pieces so as to alignA with A8, B
with B8, etc. It is not permitted to flip the pieces over, but the
can be translated and rotated in any fashion within the plane.
such assembly is shown at the bottom of Fig. 1. The problem i
find all possible assemblies. It is simplest to hold one of the lin
say the quadrilateral, in a fixed location and determine the lo
tions of the remaining links.

Using the formulation in@20# for problems of this type, the
problem can be written as a system of polynomial equations:

u j û j51, j 51, . . . ,6 (1)

2a01a1u11a2u22a3u350

2b01b2u21a3u32a4u41a5u550 (2)

2c01a4u41b5u52a6u650

2ā01ā1û11ā2û22ā3û350

2b̄01b̄2û21ā3û32ā4û41ā5û550 (3)

2 c̄01ā4û41b̄5û52ā6û650

The parametersa0 ,b0 ,c0 ,a1 ,a2 ,b2 ,a3 ,a4 ,a5 ,b5 ,a6 are com-
plex numbers that describe the shape of the links. In Eqs.~3!, āi ,
b̄i , and c̄i denote the complex conjugate ofai , bi , andci . One
may notice that the coefficients in Eqs.~3! are the conjugates o
those in Eqs.~2!. The complex variableu i5eA21f i represents the
rotation of link i through anglef i . Solutions havinguu i u51 ~all

Fig. 1 Top: Find all possible assemblies of these pieces into a
7-bar mechanism. Bottom: One such assembly.
Journal of Mechanical Design
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i ) mean that the links have real rotation angles, so these co
spond to actual solutions of the geometric problem.

For generic parameters, this problem has 18 distinct solution
complex space, see@21# for a demonstration using a differen
formulation. For the particular set of pieces shown in Fig. 1, ei
of these are ‘‘real’’ solutions havinguu i u51.

For certain special linkages, higher-dimensional solution s
can occur. One such example can be constructed by making
two four-bar linkages ABFEG and CDIHG to be Roberts co
nates,~@22#, p. 340!, so that the solution set must include a fou
bar coupler curve, having degree six. Our objective will be
confirm that the known curve is discovered by the algorithm a
additionally to see if any other solutions exist.

2.2 Special Stewart-Gough Platforms. A generic Stewart-
Gough platform consists of two rigid bodies, called the base
the endplate, joined by six legs. The legs are connected to the
and endplate by spherical joints. As a robot-manipulator,
lengths of the legs are controlled by actuators to move the e
plate with six degrees of freedom, but when the leg lengths
held constant, the platform is in most cases a rigid structure. H
ever, for certain arrangements of the joints and certain leg leng
the structure may lose rigidity and become mobile. For a rob
manipulator, this is generally undesirable and possibly danger
On the other hand, the same arrangement might be useful
mechanism, having one or more degrees of freedom.

When the six ball joints in the base and the six ball joints in t
endplate are in general position, a Stewart-Gough platform
forty isolated solutions. This was first established nearly simu
neously by continuation@7#, by computer algebra@23,24#, and by
proof using algebraic geometry@25#. Simpler analytical proofs
came later@26,27#. One formulation of the kinematic equations
as follows, where (e,g)PP7 are Study coordinates for rigid bod
motion @27#. Here,P7 means seven-dimensional projective spa
which means that~e,g! are a set of eight coordinates whose sc
does not matter.~Two sets~e,g! that differ only by a nonzero scale
factor represent the same rigid-body displacement.! The first four
coordinates,e, are a quaternion that represents orientation and
last four coordinates,g, encode position. Considered as fou
vectors,e andg must be orthogonal to represent a valid rigid-bo
displacement. This condition is the first equation in the followi
system, whereas the other six equations express the cons
imposed by the six given leg lengths:

eTg50

L0eTe2gTg50 (4)

Fig. 2 Griffis-Duffy platform. Both base and endplate are equi-
lateral triangles.
MARCH 2004, Vol. 126 Õ 263
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HereL0 is the length of one of the legs, and the 434 matricesAi
and Bi depend on the ball joint positions and leg lengths as
tailed in @27#.

One special kind of Stewart-Gough platform, shown in Fig.
is called a Griffis-Duffy platform@28,29#. In this platform, the
base and endplate are triangles, with ball joints at each vertex
along each side. The legs connect a side point of one body
vertex of the other, correspondences proceeding in order aro
the respective triangles. That is, labelling the joints asP0 , . . . ,P5
clockwise around the base triangle and the corresponding join
the endplate asP08 , . . . ,P58 , leg i connectsPi to Pi 118 , consider-
ing P68[P08 .

We consider two special Griffis-Duffy platforms, first identifie
in @29#. In the first specialization, the base and endplate triang
are equilateral and the ball joints on the sides are at the midpo
Figure 2 is of this type. Note that the endplate and base are sim
but may have different scales. The second case, a further spe
ization of the first one, is to make the base and endplates con
ent and to make all six leg lengths equal. For convenience, le
call these two special cases the Griffis-Duffy I and Griffis-Duffy
platforms.

Griffis-Duffy I platforms are members of a class of Stewa
Gough platforms that are calledarchitecturally singular. For gen-
eral leg lengths, these platforms have no solutions: they canno
assembled. However, if one specifies a general position of
endplate with respect to the base and sets the leg lengths to m
then the platform has one-degree-of-freedom of motion. In@29#,
the motion of Griffis-Duffy I and II platforms are analyzed. W
treated both these cases numerically, expecting only to confirm
results in@28#. However, we found instead several surprises t
we explain in §4 below.

2.3 A Spatial Body-Guidance Problem. Our final example
problem concerns the synthesis of a mechanism to guide a
body through six spatial positions. The spatial problem may
regarded as a generalization of the classical planar Burme
problem: given five placements of a moving body in the pla
find the points of the moving body that lie on a common circ
fixed in the plane. These points are called ‘‘circle points,’’ and
centers of the fixed circles are called ‘‘center points.’’ There are
general four centerpoint/circle-point pairs. If we specify only fo
placements instead of five, we get a center-point curve an
circle-point curve, each of which are cubic@22#. These curves are
useful for designing a four-bar linkage to carry the body throu
the specified locations: a so-called body-guidance design prob

A related problem, due to Scho¨nflies, considers a body movin
in space rather than in the plane, and asks for points of the b
that lie on a common fixed sphere for several given placemen
the body in space. Seven general positions determine 20 ce
point/sphere-point pairs, a result proven by Scho¨nflies in 1886
@22#. Solutions computed by continuation were reported in@5#,
and a reduction to a degree-20 polynomial in one variable give
@30#. These solutions can be useful for designing a seven-bar
tial mechanism to guide a body through the specified precis
points.

We consider a variation of this problem in which only six plac
ments are given. For general positions, these will determin
center-point curve and a corresponding sphere-point curve. P
erly speaking, lettingyPR3 be the center point andxPR3 the
corresponding sphere point, there is a single center-point/sph
point curve in (x,y). Projecting this curve ontoy only gives the
center-point curve in the fixed space, and projecting ontox gives
the sphere-point curve in the moving body. It is natural to won
if the center-point/sphere-point curve is a single irreducible pi
and to determine its degree.

For i 51, . . . ,6, letpiPR3 denote the position of the referenc
264 Õ Vol. 126, MARCH 2004
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point of the body and letRiPSO(3),R333 be the rotation matrix
for the body’s orientation. Equations for the system can be writ
as, for i 51, . . . ,5, see@5#,

yT~Ri2R0!x1yT~pi2p0!2~pi
TRi2p0

TR0!x

2~pi
Tpi2p0

Tp0!/250. (5)

It may be seen from the bilinear structure of this system t
slicing the solution curve by adding a single linear equation
(x,y) will yield at most 20 solutions, while slicing it with a linea
equation in justx or y alone will yield at most 10 solutions. Thes
follow from the two-homogeneous Bezout numbers for the s
tem, obtained by finding the coefficient ofab in
) i 51

6 (degx( f i)a1degy( f i)b), where degx( f i) is the degree ofx
in equationf i , and similarly for degy( f i). For the slice in (x,y),
the coefficient ofa3b3 in (a1b)6 is 20, and for a slice only inx,
the coefficient ofa3b3 in a(a1b)5 is 10. ~See@31# for multi-
homogeneous Bezout formulas, and see@22, p.138# for an alter-
native deduction of these degrees.! These represent limits on th
degree and bi-degree of the curve, but do not tell us the e
degrees or whether the curve is irreducible. Our methods
determine these questions.

3 Outline of the Method
Given a system ofm polynomial equations inn variables,

f (x):Cn→Cm, how can we determine the dimensions of its so
tion components and how can we represent those solutions
merically? First, we must define what we mean by ‘‘component
Notice that, even though in kinematics we are generally interes
only in real solutions, at this point we are considering the eq
tions over the complexes. This simplifies the problem consid
ably; we will investigate the computation of real components
the future.

It is well-known from algebraic geometry, that the solution s
can be broken up intoirreducible components. These are the natu
ral pieces into which one would divide up the set: individu
points, curves, surfaces, etc. To be more precise, an irreduc
algebraic set is one that cannot be expressed as the union
finite number of proper algebraic subsets.~An algebraic set is the
solution set of some system of polynomial equations.! For ex-
ample, a line is irreducible: it can be considered the union of
infinite number of points or cut up into a finite number of piec
by inequalities, but neither of these violates its irreducibility. O
the other hand, the union of two lines or the union of a line an
point distinct from the line are both reducible. The decomposit
of a solution set into its irreducible components is analogous
the factorization of a polynomial in one variable: there are a fin
number of solution points, although some may appear with m
tiplicity. A more complete analogy is given in Table 1.

One should note that irreducible components are determine
complex space. The real part of a complex curve may have sev
disjoint pieces. A familiar example is that a four-bar coupler cur
may have two disjoint circuits, but both are part of the sa
complex coupler curve; that is, both circuits are given by the sa
sixth-degree coupler curve equation. The exceptions are when
coupler curve equation factors. For example, the coupler curv

Table 1 Analogy between solutions of univariate polynomials
and system of polynomials

Univariate System

1 equation in 1 variable n equations inN variables
Solution points Solution points, curves, surfaces, et

Double roots, triple roots, etc. Sets with multiplicity
Factorization,) i(z2ai)

m i Irreducible decomposition
Numerical Representation

Solution points Witness sets
Transactions of the ASME
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a parallelogram linkage factors into a circle and a fourth-deg
curve, and these two pieces are its irreducible components.

A crucial fact used in our algorithms is that an algebraic setS of
dimensionk in Cn meets almost every linear subspace of dime
sionn2k in a nonzero, finite number of points, where the numb
of points is equal to the degreed of the set. This is where the us
of complex space is very useful, because a real algebraic curv
real 3-space might not intersect a given plane, but when exten
to their complex counterparts, the two will meet, albeit possibly
complex-valued points. LetLn2k denote the set of all linear sub
spaces of dimensionn2k in Cn. Then, the members of this se
that do not meetS in d isolated points are an algebraic subset
Ln2k . On the other hand, almost every line inLn2k completely
misses any given algebraic set of dimension less thank. Again,
the exceptions form an algebraic subset.

In outline, our algorithm@13# computes the irreducible decom
position, using the facts just stated, as follows. Assuming that
given equations are not all identically zero, we start by looking
components of dimensionn21. We do so by intersecting the so
lution set with a randomly chosen line,L. With probability one,
this line meets the components of dimensionn21 in a finite
number of isolated points, which we compute using continuat
We call these pointswitness points. The line misses all lower-
dimensional components entirely. We may now move the l
around and follow the solution points to collect samples on
solution set. There are several ways to use these samples to
tify which witness points belong to the same irreducible com
nents. One is to fit a polynomial to the sample set and ch
which other witness points satisfy it@13#. Another alternative is
the monodromy algorithm@16#, which attempts to connect point
by a continuation path. A by-product of either technique is
discovery of the degree of each component, which equals
number of distinct witness points found on the component. T
component is described by the collection consisting of the sys
of equations, the slicing lineL, the degreed of the component,
the d witness points that are the intersection ofL with the com-
ponent. We call this a witness set for the component. This c
pletes the discovery and decomposition of solution sets of dim
sion
n21.

We may now proceed to dimensionn22, this time cutting with
a random plane~a member ofL2). With probability one, this will
hit the (n22)-dimensional components in a finite number of is
lated points and miss the lower-dimensional components. It d
however, intersect the higher-dimensional components. We u
second continuation to get the isolated points, but we may also
some points on the higher-dimensional components. But thi
not a problem, since we can use the information already glea
in the previous round to detect these and cast them out. We t
as before, collect the witness points into irreducible compone
to complete the work at dimensionn22.

The algorithm moves down the dimensions sequentially, u
finally, at dimension zero, we find the isolated solutions to
system.

The final output is a list of all irreducible components found
each dimension. For each of these, we have witness points.
number of witness points is equal to the degree of the irreduc
component, and they all lie on a common (n2k)-dimensional
linear subspace. Starting at a witness point, we can, by conti
tion, move the linear slice to sample as many points as we
from a component. The combination of the linear slice and
witness points that lie on it form awitness setfor the component.

In the foregoing description of the method, we have skipp
over the issue of sets having multiplicity greater than one. Th
are higher-dimensional analogues of multiple roots of a poly
mial in one variable. The interested reader is referred to@13# for
details.

In the next few paragraphs, we give some more details ab
Journal of Mechanical Design
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the efficient computation of witness points and about the mo
dromy method of finding irreducible components.

3.1 Embedding and Cascade. As described above, witnes
points are found by slicing the solution set with a sequence
random linear spaces of successively higher dimension. Th
computations can be done completely independently, but i
much more efficient to combine all the slices into a comm
formulation, called theembedding, and proceed from one slice t
the next via acascadeof homotopies that respect the embeddin
This approach is fully presented in@14#. We give only a brief
outline here.

Throughout this description we use a subscripting conven
that indicates the size of matrices; for example,Am3n denotes a
m3n matrix with complex entries. If eitherm or n is less than 1,
Am3n is empty. MatrixI m3m is them3m identity matrix. A bold-
face letter with a single subscript denotes a column vector.

Suppose we wish to study a system ofm polynomials inn
variables,fm(xn). The number of polynomials and variables a
not necessarily equal. Letk5min(m,n), and introducek ‘‘slack
variables,’’ zk , and k homotopy cascade variables,tk . We can
embed all of the slicing operations for generating witness point
every dimension into a single system of equations of the form

E~xn ,zk ,tk!5F @ I k3k Ak3(m2k)#fm~xn!1Bk3kzk

C(n2k)3nxn1D (n2k)31

zk1diag~ tk!~Ek3nxn1Fk31!
G50, (6)

where matricesAk3(m2k) , Bk3k , C(n2k)3n , D (n2k)31 , Ek3n and
Fk31 are random with complex entries, and where diag(tk) is a
k3k diagonal matrix withtk on the diagonal. Giventk , this is a
system ofn1k equations in then1k variables (xn ,zk). Ignoring
the termBk3kzk , the firstn equations of the embedding are th
original polynomials, either squared up viaAk3(m2k) if m.n, or
sliced down viaC(n2k)3n andD (n2k)31 if m,n. For the common
case ofm5n, A, C andD are nonexistent. FormÞn, the validity
of replacingfm by either the squared up or sliced down version
as appropriate, is discussed in@14,18#.

Recall that the witness points for dimensionj are obtained as
the simultaneous solution of the polynomialsfm with j additional
random linear equations, the slice. In the casem,n, we haven
2m slice equations built into the embedding. Let

Ej~xn ,zk!5E~xn ,zk ,@1, . . .,1,0, . . . ,0# !, (6)

where the initialj 2(n2k) elements oftk are nonzero. As can be
seen by direct substitution into Eq.~6!, any solution ofEj with
zk50 is a solution of the original system withj additional linear
equations; that is, it is one of the witness points we seek.
algorithm for generating all the witness points at every dimens
is to first solveEn(xn ,zk)50, which meanstk5(1, . . .,1), and
then follow solution paths in a cascade ofk homotopies, each
taking one more entry intk from one to zero. At each stage of th
cascade, the witness points are those withzk50 and the rest are
start points for the solution paths for the next stage. This emb
ding of one slice within another saves considerable computa
compared to naively computing each slice independently.

3.2 Monodromy With Linear Traces. With witness points
in hand, the next step is to group them into the irreducible co
ponents. Irreducible components are the pieces of the solution
that remain connected even after singularities have been remo
The essential fact is that if two irreducible componentsX andY of
dimensioni meet at all, their intersection is of lower dimensio
dim(XùY), i . Suppose we have witness points forX andY on a
common linear sliceL of dimensionn2 i , but we don’t know
which witness point is on which component. We can track
witness points in a continuation as we moveL in a general man-
ner. A general motion ofL has a zero probability of touching
XùY, because its dimensionality is too low. So the paths of
witness points forX and those forY have a zero probability of
crossing. Themonodromymethod@16# simply moves the sliceL
MARCH 2004, Vol. 126 Õ 265
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Table 2 Execution summary for 7-bar mechanism „see text for explanation …

Witness Generate Witness Classify
dim x ns Ŵ ` cpu 1 0 cpu

1 48 42 6 0 8.7s 6 0 42.2s
0 42 — 6 36 3.7s 0 6 0.3s

tot 90 42 12 36 12.4s 6 6 42.5s
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around randomly generated loops and checks upon return to
initial position whether any of the solution paths ends on a diff
ent witness point than it started. If so, we know that the t
witness points are on the same irreducible component. After tra
ing enough monodromy loops, one may hope to discover all p
sible connections and thereby know how the witness points gr
into components.

The shortcoming of a naive implementation of monodromy
that one never knows when to terminate. The connections betw
witness points occur on loops that encircle branch points wh
two or more witness points coincide or meet the same singula
Since we do not know at the outset how many irreducible co
ponents there are, we do not know from monodromy alone w
all connections have been found.

An answer to this problem is to use linear traces@17#. Given a
subset of witness points on a component, the trace test tells i
subset is complete. One version of the test is as follows: if
move the slice parallel to itself by varying the constant of o
equation of the slice~i.e., an element ofFk31), the centroid of the
complete witness point set for a component must move on a
Moreover, since the orientation of the slices is general, linearity
the trace implies that the witness set is complete. Thus, by ch
ing the trace after every new monodromy connection is found,
can determine which subgroupings of the witness points fo
complete irreducible components and only track the incomp
sets in the succeeding monodromy loops. When all the subgro
pass the trace test, the irreducible decomposition is complete
ternatively, one can check traces on subsets of the witness p
to find the irreducible decomposition without monodromy. Wh
the number of witness points is large, this is an intractable co
binatoric problem, but after some initial groupings are found
monodromy, the combinatoric approach can be used to finish
task. For a small number of groupings, the combinatoric appro
is preferable, since the cost of computing monodromy loops
large compared to the cost of a trace test. The question of deci
when to switch from monodromy to combinatorics is still open
study.

4 Solutions of the Examples
We now return to the sample problems described in §2

discuss the results found by our algorithms. The timings repo
in this paper are obtained from runs on an 800Mhz Pentium
Linux machine.

4.1 A Mobile Seven-Bar Linkage. As described above, we
may construct a mobile seven-bar linkage using Roberts cogn
A particular example is as follows. First, choose

b050, b2520.1110.49i , a250.46, a550.41,

c051.2, a50.610.8i , b5e1.8i . (7)

Then, derive the remaining parameters as

a35a5 , g5b2 /a2 , b55a5g, a05c0 /g, a45ub2u,

a15ua01a3a2a4b/gu, a65ua4b2b5a2c0u. (8)

The computations for this example begin with a test for a so
tion curve. To obtain witness points on any motion curves t
might exist, we intersect the solution set with a random hyp
plane. This means we add a random linear equation to the sy
and use the homotopy in@14# to find all solution points. The extra
, MARCH 2004
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equation is incorporated using a slack variable. As indicated in th
first line of Table 2, this homotopy requires tracking 48 solution
paths ~column with headerx!. After 8.7s, we find six witness
points and 42 ‘‘non-solutions,’’~column ‘‘ns’’ in Table 2!. Non-
solutions are distinguished from witness points by having a no
zero slack variable. The six witness points represent the sixt
degree coupler motion, which traces the path shown in Fig. 3~a!.
The coefficients of the coupler motion equation are found by sam

Fig. 3 Assemblies of a seven-bar linkage: „a… a solution curve
of degree six and „b… one of six isolated solutions.
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pling and fitting, confirming in the process that no equation
lower than degree six fits the data. In this way, the algorit
confirms that the coupler motion is one irreducible componen
degree six. Note that by ‘‘coupler motion’’ we mean the cur
n(u i ,û i), i 51,...,6, satisfying Eqs.~1,2,3!, which must be dis-
tinguished from the ‘‘coupler curve,’’ meaning the path traced
by the coupler point.

In the second stage of the algorithm, summarized in line two
Table 2, the 42 non-solutions from the first stage are used as
points for a homotopy that will lead to the isolated roots. Aft
3.7s, we find that there are six potential witness points~column
‘‘ Ŵ’’ !, with the other 36 solutions diverging to roots at infini
~column ‘‘`’’ !. Using the coupler motion equation from the fir
stage, we confirm that none of the six finite points is on the c
pler motion, hence they are all true witness points. Each of th
is a rigid assembly of the links, one of which is shown in F
3~b!.

The greatest cost in execution time on this problem was the
used to construct an interpolating polynomial for the coupler m
tion. To only confirm that the six witness points are on one ir
ducible component, double precision floating-point arithmetic
sufficient. However, to test the solutions at the next stage by
method of@13#, we need an accurate interpolating polynomial. F
this purpose, we used multi-precision arithmetic routines to co
pute sample points to 40 decimal places, which is computation
expensive. A more efficient approach@16# is used on the nex
example problem, but we report here the earlier approach.

The isolated solutions have a simple physical interpretat
Regard the linkage as two four-bars,ABFEG and CDIHG,
joined at a common coupler pointG. If we disconnect these link-
ages at the coupler point, both sweep out the same coupler c
The isolated solutions come where the coupler curve s
intersects, that is, at its double points. Observe that in Fig. 3~b!,
four-bar ABFEG is positioned to move horizontally along th
coupler curve whereas four-barCDIHG is ready to move along
the near vertical portion of the curve. Since these motions
incompatible, the assembled structure is immobile in this confi
ration. We may reverse the roles to get a second isolated solu
at this same double point of the coupler curve. A general four-
coupler curve has three double points, and since this clas
moveable seven-bar structures will have two isolated soluti
associated to each double point, there will be in general six
lated solutions. In the example worked here, only one dou
point is real, hence two of the six isolated solutions are real.

4.2 Griffis-Duffy Platforms. We begin the analysis of the
Griffis-Duffy platforms by searching for solution curves. Startin
with 128 paths~the total degree of Eqs.~4!, the intersection of the
curves with a random plane gives forty witness points. Compu
tion of the witness points takes about one minute.

In this example, it is highly desirable to avoid the interpolati
step that was so expensive in the seven-bar example. This is
cause the number of monomials to compute grows exponent
as the dimension and the degree increase. Also, high degree
nomials are numerically difficult, so expensive multi-precisi
arithmetic is needed. Instead of interpolation, we can apply
monodromy algorithm of@16# to detect irreducible components
using linear traces to validate the groupings@17#.

4.3 Griffis-Duffy I. In this case, the monodromy algorithm
of @16# predicts that the 40 witness points break into 12 lines a
an irreducible curve of degree 28. Monodromy predicts this
33.4s and linear traces validate the groupings in 4.8s.~For com-
parison, we also ran the interpolation algorithm and found tha
requires 1h 19m to compute an interpolant of degree 28.! The
twelve lines all satisfy the equationeTe50, which means that they
do not give physically meaningful configurations. This is beca
e is a quaternion representing the rotation of the endplate, a
Journal of Mechanical Design
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solution ~e,g! is meaningful only if it can be rescaled toeTe51.
Therefore, we find that the Griffis-Duffy I platform has a sing
irreducible motion curve of degree 28.

On the face of it, this result seems to be at odds with the re
of Husty and Karger@29#, who give a degree 20 polynomial tha
vanishes on the motion curve. However, on closer inspect
there is no contradiction: Husty and Karger first eliminate t
positional variablesg and work only with e. We find that the
degree 28 curve in the full coordinates~e,g! drops to only degree
20 when projected onto the rotational componente.

4.4 Griffis-Duffy II. This special case of the Griffis-Duffy
platform also has 12 lines corresponding to degenerate as
blies, but now the curve of degree 28 breaks up into lower-deg
irreducible components. It takes 27.6s for the monodromy al
rithm of @16# to group the 28 witness points into five sets: four
the five have cardinality six, and one set has four points. Vali
tion of these groups by linear traces takes an additional 4
~Again, purely for purposes of comparison, we also compute
terpolating polynomials. This time it is much cheaper, only 2
34s, because the degree of the components is much lower.!

In this case, the comparison of our results with those in@29# are
more striking: we find five components of degree$6,6,6,6,4%
whereas Husty and Karger report four components of deg
$6,4,4,4%. Two of the differences are resolved similarly as in t
Griffis-Duffy I case. That is, we find that two of the quartic
reported in@29# are indeed fourth-degree ine, but they are degree
six in ~e,g!. However, Husty and Karger, working with symboli
computation guided by hand, did not report one of the sex
components. This shows the value of a general algorithm
demonstrates the effectiveness of our numerical approach.

4.5 Center-PointÕ Sphere-Point Curves. Briefly stated,
slicing with a random hyperplane, our approach finds 20 witn
points on the center-point/sphere-point curve, which agrees w
the degree calculated via the two-homogeneous Bezout num
Using the monodromy algorithm, we find that all 20 solutio
connect, so we may conclude that the center-point/sphere-p
curve is an irreducible curve of degree 20. Slicing with a hyp
plane involving onlyx gives ten witness points, thus showing th
the sphere-point curve is degree 10, and similarly, slicing wit
linear equation in onlyy, we find that the center-point curve i
also degree 10. These results confirm that the upper bound
these degrees predicted from the bi-linearity of Eqs.~5! are exact.
One should always keep in mind that calculations of total deg
multihomogeneous degree, and the like, are merely upper bo
on the actual degree of the variety. Our method provides a con
nient way to determine the actual degree.

This example illustrates a phenomenon that occurs frequent
kinematics: a projection of an algebraic variety onto a subse
the variables can have a lower degree than the variety itself.
do not need to eliminate variables to answer questions abou
projection; we work numerically with all the variables, takin
special slices to find the properties of the projection.

5 Conclusions
From the experience of the last decade, polynomial contin

tion has been known to be a reliable and convenient way to
solutions to problems in kinematics. However, until recently, the
methods were limited to finding isolated roots, which limited t
kinds of problems that could be addressed. Of particular difficu
are overconstrained mechanisms, which have more degree
freedom of movement than expected from the usual mobility c
culation. These may have a mixture of isolated solutions~rigid
assemblies! and motion curves of various dimensions. Also, it c
happen that the motion at one dimension is composed of m
than one irreducible piece.

We have developed software, well documented in the app
math literature, for solving these more difficult problems. Th
paper reports on the application of the new methods to sev
MARCH 2004, Vol. 126 Õ 267
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problems in kinematics: an overconstrained planar mechan
Griffis-Duffy examples of movable Stewart-Gough platfor
structures, and center-point/sphere-point curves for six spatia
sitions. In each case, our numerical methods give a complet
reducible decomposition of the solution set. For the planar sev
bar, the results are consistent with known theory: two Rob
cognate four-bars share a degree-six coupler curve and the
double points of the coupler curve each give two rigid assemb
of the seven-bar. Calculations for the center-point/sphere-p
curve also agree with prior theory. However, for the Griffis-Duf
platforms, we get a bit of a surprise: we find some differen
from the results published by Husty and Karger. Of these, dif
ences in the degrees of components were not true contradict
but are due to the use by Husty and Karger of a projection o
rotational coordinates whereas we work the problem in both
sition and rotation coordinates. However, for the Griffis-Duffy
platform, our algorithm finds a sixth-degree component that t
did not report. This shows the usefulness of the numerical
proach to find new results or check results found by other me

Acknowledgments
We gratefully acknowledge the support of this work b

Volkswagen-Stiftung~RiP-program at Oberwolfach!. The first au-
thor thanks the Duncan Chair of the University of Notre Dam
and National Science Foundation. This material is based u
work supported by the National Science Foundation under G
No. 0105653. The second author thanks the Department of M
ematics of the University of Illinois at Chicago and National S
ence Foundation. This material is based upon work supporte
the National Science Foundation under Grant No. 0105739
Grant No. 0134611. The third author thanks the General Mo
Research and Development Center for its support.

References
@1# Roth, B., and Freudenstein, F., 1963, ‘‘Synthesis of Path-generating Me

nisms by Numerical Methods,’’ ASME J. Eng. Ind.,85B-3, pp. 298–306.
@2# Roth, B., and Freudenstein, F., 1963, ‘‘Numerical Solution of Systems of N

linear Equations,’’ J. Assoc. Comput. Mach.,10, pp. 550–556.
@3# Tsai, L.-W., and Morgan, A. P., 1985, ‘‘Solving the Kinematics of the Mo

General Six- and Five-Degree-of-Freedom Manipulators by Continua
Methods,’’ ASME J. Mech. Des.,107, pp. 189–200.

@4# Morgan, A. P., 1987,Solving Polynomial Systems Using Continuation for S
entific and Engineering Problems, Prentice-Hall, Englewood Cliffs, NJ.

@5# Wampler, C. W., Morgan, A. P., and Sommese, A. J., 1990, ‘‘Numerical C
tinuation Methods for Solving Polynomial Systems Arising in Kinematics
ASME J. Mech. Des.,112, pp. 59–68.

@6# Li, T. Y., 1997, ‘‘Numerical Solution of Multivariate Polynomial Systems b
Homotopy Continuation Methods,’’ Acta Numerica,6, pp. 399–436.

@7# Raghavan, M., 1993, ‘‘The Stewart Platform of General Geometry has
Configurations,’’ ASME J. Mech. Des.,115, pp. 277–282, June.

@8# Raghavan, M., and Roth, B., 1995, ‘‘Solving Polynomial Systems for
Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulato
ASME J. Mech. Des.,117~B!, pp. 71–79.

@9# Waldron, K. J., and Sreenivasen, S. V., 1996, ‘‘A Study of the Solvability
the Position Problem for Multi-Circuit Mechanisms by Way of Example of t
Double Butterfly Linkage,’’ ASME J. Mech. Des.,118~3!, pp. 390–395.
268 Õ Vol. 126, MARCH 2004
sm,

po-
ir-

en-
rts
hree
lies
int

fy
es
er-
ons,
nto
po-
II
ey

ap-
ns.

y

e
pon
ant
ath-
i-
by

and
ors

ha-

n-

st
ion

i-

n-
,’’

40

he
s,’’

of
e

@10# Wampler, C. W., Morgan, A. P., and Sommese, A. J., 1992, ‘‘Complete So
tion of the Nine-point Path Synthesis Problem for Four-bar Linkages,’’ ASM
J. Mech. Des.,114, pp. 153–159.

@11# Morgan, A. P., Sommese, A. J., and Watson, L. T., 1989, ‘‘Finding All Isolat
Solutions to Polynomial Systems Using HOMPACK,’’ ACM Trans. Math
Softw., 15, pp. 93–122.

@12# Verschelde, J., 1999, ‘‘Algorithm 795: PHCpack: A General-purpose Sol
for Polynomial Systems by Homotopy Continuation,’’ ACM Trans. Mat
Softw., 25~2!, pp. 251–276. Software available at http://www.math.uic.ed
;jan.

@13# Sommese, A. J., Verschelde, J., and Wampler, C. W., 2001, ‘‘Numerical
composition of the Solution Sets of Polynomial Systems into Irreducible Co
ponents,’’ SIAM ~Soc. Ind. Appl. Math.! J. Numer. Anal.,38~6!, pp. 2022–
2046.

@14# Sommese, A. J., and Verschelde, J., 2000, ‘‘Numerical Homotopies to C
pute Generic Points on Positive Dimensional Algebraic Sets,’’ Journal of Co
plexity, 16~3!, pp. 572–602.

@15# Sommese, A. J., Verschelde, J., and Wampler, C. W., 2001, ‘‘Numerical I
ducible Decomposition Using Projections from Points on the Components,
E. L. Green, S. Hosten, R. C. Laubenbacher, and V. Powers, ed.,Symbolic
Computation: Solving Equations in Algebra, Geometry, and Engineering, vol.
286 of Contemporary Mathematics, pp. 37–51. Amer. Math. Soc.

@16# Sommese, A. J., Verschelde, J., and Wampler, C. W., 2001, ‘‘Using Mo
dromy to Decompose Solution Sets of Polynomial Systems into Irreduc
Components,’’ C. Ciliberto, F. Hirzebruch, R. Miranda, and M. Teicher, e
Application of Algebraic Geometry to Coding Theory, Physics and Compu
tion, pp. 297–315. Kluwer Academic Publishers.

@17# Sommese, A. J., Verschelde, J., and Wampler, C. W., 2002, ‘‘Symmetric F
tions Applied to Decomposing Solution Sets of Polynomial Systems,’’ SIA
~Soc. Ind. Appl. Math.! J. Numer. Anal.,40~6!, pp. 2026–2046.

@18# Sommese, A. J., and Wampler, C. W., 1996, ‘‘Numerical Algebraic Geomet
J. Renegar, M. Shub, and S. Smale, eds,The Mathematics of Numerical Analy
sis, Vol. 32 of Lectures in Applied Mathematics, pp. 749–763. Amer. Math.
Soc.

@19# Sommese, A. J., Verschelde, J., and Wampler, C. W., 2003, ‘‘Numerical I
ducible Decomposition Using PHCpack,’’ M. Joswig, and N. Takayama, e
Algebra, Geometry and Software Systems, pp. 109–130, Springer-Verlag.

@20# Wampler, C. W., 1999, ‘‘Solving the Kinematics of Planar Mechanisms
ASME J. Mech. Des.,121, pp. 387–391.

@21# Innocenti, C., 1995, ‘‘Polynomial Solution to the Position Analysis of th
7-link Assur Kinematic Chain with One Quaternary Link,’’ Mech. Mach
Theory,30~8!, pp. 1295–1303.

@22# Bottema, O., and Roth, B., 1979,Theoretical Kinematics, North-Holland, Am-
sterdam.

@23# Lazard, D., 1992, ‘‘Stewart Platform and Gro¨bner Basis,’’Proc. ARK, pp.
136–142, Ferrare, September.

@24# Mourrain, B., 1993, ‘‘The 40 Generic Positions of a Parallel Robot,’’Proc.
ISSAC’93, pp. 173–182, Kiev~Ukraine!, July, ACM press.

@25# Ronga, F., and Vust, T., 1992 ‘‘Stewart Platforms without Computer?’’ Pr
Conf. Real Analytic and Algebraic Geometry, Trento, pp. 197–212.

@26# Husty, M. L., 1996, ‘‘An Algorithm for Solving the Direct Kinematics of
General Stewart-Gough Platforms,’’ Mech. Mach. Theory,31~4!, pp. 365–380.

@27# Wampler, C. W., 1996, ‘‘Forward Displacement Analysis of General Six-
Parallel SPS~Stewart! Platform Manipulators Using Soma Coordinates
Mech. Mach. Theory,31~3!, pp. 331–337.

@28# Griffis, M., and Duffy, J., 1993, ‘‘Method and Apparatus for Controlling Ge
metrically Simple Parallel Mechanisms with Distictive Connections,’’ U
Patent 5,179,525.

@29# Husty, M. L., and Karger, A., 2000, ‘‘Self-motions of Griffis-Duffy Type Par
allel Manipulators,’’ Proc. IEEE Int. Conf. Robotics and Automation, San
Francisco, CA, April.

@30# Innocenti, C., 1995, ‘‘Polynomial Solution of the Spatial Burmester Problem
ASME J. Mech. Des.,117~1!, pp. 64–68, March.

@31# Morgan, A. P., and Sommese, A. J., 1987, ‘‘A Homotopy for Solving Gene
Polynomial Systems that Respectsm-homogeneous Structures,’’ Appl. Math
Comput.,24, pp. 101–113.
Transactions of the ASME


